

The PATHION DirectCore[™] Platform stores & delivers clean energy. It integrates storage, solar or other power generation, and power conversion with advanced management technology across the entire system.

For grid-connected systems, PATHION reduces peak demand charges and Time-of-Use (TOU) charges. PATHION systems provide smooth power during utility power events such as brownouts, voltage sags, frequency disturbances, transients, and electrical noise problems.

Advantages

- DC-optimized for faster response, greater efficiency
- Minimizes peak demand charges where applicable
- · Shifts net usage to low Time-of-Use cost periods
- Clean, quality power delivery, 24/7/365
- · Highly redundant; designed for 100% uptime
- Automatic 24/7 fault isolation reduces service costs
- Proven, lithium-ion cell technology for 20+ year design life
- NEMA 3R enclosures can be sited virtually anywhere

Features

- DirectCore manages all battery, load, generation, and grid interfaces for maximum efficiency, use of resources, operating cost reductions, and maximum reliability
- · Integrates solar and other power sources
- Support for 'islanding' off-grid operation
- UL, TÜV certifications; meets or exceeds all operational and safety requirements
- Full 5 or 10 year warranty on the complete system

The DirectCore Platform has an extremely fast transition rate, less than ¹/₄ second, that ensures safe operation of critical loads. It can also be set up to provide resiliency against extended utility grid power outages.

The DirectCore EMS is fully redundant, so that individual system components can be isolated and serviced without shutting down the entire system. This eases serviceability while maintaining continuous, safe operation.

Wide Range of Applications & Benefits

	Segment	Benefit
	Heavy Manufacturing	Clean power, rapid backup switching
	Power Sale Only	Max grid service revenue
	Commercial Office	Resilience plus reduced utility charges
	Community Solar	Max PV output, lowest net energy cost
	Hotels	Reduced energy costs, better resilience

Systems

		Energy Storage Capacity, kWh	PCS	ESS
PA250kW-548E	250	548	1, Fig. 1 1	l, Fig. 2
PA250kW-1096E	250	1096	1, Fig. 1 2	2, Fig. 2
PA500kW-1096E	500	1096	2, Fig. 1 2	2, Fig. 2
PA1000kW-2192E	1000	2100	All in one	e, Fig. 4
PA1000kW-4200E	1000	4200	1, Fig. 3 1	l, Fig. 5
PA2000kW-4200E	2000	4200	1, Fig. 3 1	l, Fig. 5
PA2000kW-8400E	2000	8400	1, Fig. 3 2	2, Fig. 5
PA2500kW-1522P	2500	1522	TBI	C

Other configurations are possible. Complete mechanical specifications can be found in "Mechanical & Environmental Specifications - All Systems" on page 6.

Typical System Design

PATHION VaultMax[™]

The VaultMax system combines advanced lithium-ion battery cells in flexible units scalable from 548 kWH to 8.4 MWh and beyond, to match application needs

VaultMax integrates Pathion Energy Storage solutions in NEMA 3R enclosures. It includes all mechanical support structures, HVAC systems, alarm and fire suppression systems, lighting and safety controls.

- Continuous cell-level voltage and state of charge notification
- Automatic 24/7 fault identification, notification, and isolation
- Designed for 100% system uptime
- Remote monitoring of complete micro-grid PV to storage - with operation, performance, and alerts provided
- Safe, low-voltage maintenance even during system operation
- Can easily be integrated with other energy assets for system or micro-grid level optimization

PATHION System Contents

- 1. Lithium-Ion Cell Packs
- 2. Fire Suppression System
- 3. Energy Management System
- 4. HVAC System
- 5. Battery Control Panel
- 6. Bi-directional power converter

DirectCore[™] Energy Management System

PATHION DirectCore Energy Management System (EMS) Features improves the safety, reliability, operational lifetime, and cost of ownership of all of your local energy sources and loads. It does this through its intelligence about load shifts, demand changes, solar availability, and local utility costs and charges.

PATHION EMS is the central control system for the complete PATHION DirectCore system and the micro-grid or other integrated network beyond. It is fully redundant. Every component is backed up by another component, and any failed element can be isolated and replaced without shutting the system down. This increases uptime/availability and also reduces service costs.

PATHION EMS has an open architecture and can interact with virtually every type of PCS/Inverter or energy source.

Advantages

- Optimizes overall system performance
- Reduces peak demand charges
- Reduces Time-of-Use charges
- Future-proofed design

Battery Life

While every lithium-ion cell has a rated energy storage capacity, experience has shown that careful management of charge and discharge cycles can extend battery life well beyond factory-guaranteed levels. PATHION's EMS software serves to maximize cell life.

PATHION EMS features battery management software with patented technology that controls individual battery packs during each charge cycle, resulting in safer operation. The system can also adjust to heterogenous battery assortments new cells mixed with existing ones.

- Interfaces directly with ISO and utility control systems
- · Intelligent dispatch discharges to grid according to predefined rules for the site
- Scheduling coordinates to bid and respond in specific timeframes to satisfy ancillary services fulfillment
- Cost reduction EMS is aware of rates and TOU - optimizes based on weather, service commitments, & load - significant savings in demand and TOU charges
- Revenue optimization optimize ancillary services while assuring that sufficient capacity is available for the load in inclement weather
- Behind-the-meter applications cost containment, resilience, and ancillary services are fully supported
- · Front-of-the-meter applications site-specific, user-defined ruleset to optimize revenue
- Application layering, with applications for:
- on-grid
- islanding
- backup
- frequency regulation
- demand response
- peak shaving to reduce demand charges
- TOU shifting to limit utility cost
- Remote monitoring and management, with:
- multi-user access and permission levels
- customizable web-based user interface
- strong encryption and security features
- System data uploaded to secure data platform for remote monitoring, diagnostics, and performance analysis

DirectCore[™] Energy Management System Technical Specifications

Mechanical		Electrical	
Dimensions	24" W x 26" H x 30" D	Input	2 x 4-Wire, 3-Phase AC
Weight	150 lbs (68 kg)	Max Power	1 kW
Operating Temperature	0°C~40°C (32°F~104°F)	Power (typical)	480 W
Storage Temperature	-40°C~85°C (-40°F~185°F)	Nominal Voltage	480 VAC, 3-phase
Ambient Rel. Humidity	10%~95% non-condensing	Voltage Range	340 - 575VAC, 3-phase
Cooling	Convection	Max Inrush Current	30 A
		Input Current (typical)	0.6 A

Communication		Computer	
Serial	5 x RS-232/422/485 (DB9)	Processor	Hyperthread 4-Core, 3.70 GHz; 8MB
LAN	AN 15 x Gigabit Ethernet (1000Base-T, RJ45)		cache
WAN	2 x Gigabit Ethernet (1000Base-T, RJ45)		32GB DDR4 ECC
Wireless (Optional) 2 x WiFi (IEEE 802.11b/g/n/ac), 2 x	HDD	2 x 500GB SSD, RAID ; >1 month data	
	2G/3G/LTE/4G	Operating System	FreeBSD 12.0 - PATHION custom distri-
Protocols Supported	tocols Supported Modbus - RTU & TCP, DNP3, IEEE 2030.5		bution
		Interface	15" 1024 x 768 LED Touchpanel

Redundancy		Standards & Compliance	
	Triple Active (2 x PSU w/ Battery	MESA	SunSpec
	Reserve)	OpenADR	NERC CIP *
Server and Comms	Double Active (2 x servers, WAN, wireless)	CA Rule 21 + HI Rule 14H *	IEEE 1547-2018 *, IEC 61970 *
Data	Quadruple Active (4 x SSD + Cloud Storage)		

Specifications subject to change without notice.

* Pending qualification.

System Specifications - 250 kW Systems

System Specifications - 500 kW Systems

	PA250kW -548E	PA250kW- 1096E	
Nominal AC power, kW	250		
kWh capacity	548	1096	
Number of battery racks	8	16	
Duration at max discharge (hrs)	2	4	
Max current THD at nominal pwr	< 2	3%	
Nominal grid voltage	480 VAC, 3Ø		
Grid voltage range	423 ~ 528 VAC, 3Ø		
Nominal grid frequency, Hz	50 / 60		
Power factor range	1 (lagging) ~1 (leading)		
Electrical isolation method	Transformer		
Grid frequency range, Hz	45 ~ 55 / 55 ~ 65		
Power factor at nominal power	> 0.99		
Max efficiency, inverter to AC	97.3%		
Off-grid operation (Islanding)	Yes		
PCS Mechanical Drawing	Fig. 1 (1 req'd)		
ESS Mechanical Drawing	Fig. 2 (1 req'd)	Fig. 2 (2 req'd)	

	PA500kW-1096E	
Nominal AC power, kW	500	
kWh capacity	1096	
Number of battery racks	16	
Duration at max discharge (hrs)	2	
Max current THD at nominal pwr	< 3%	
Nominal grid voltage	480 VAC, 3Ø	
Grid voltage range	423 ~ 528 VAC, 3Ø	
Nominal grid frequency, Hz	50 / 60	
Power factor range	1 (lagging) ~1 (leading)	
Electrical isolation method	Transformer	
Grid frequency range, Hz	45 ~ 55 / 55 ~ 65	
Power factor at nominal power	> 0.99	
Max efficiency, inverter to AC	97.3%	
Off-grid operation (Islanding)	Yes	
PCS Mechanical Drawing	Fig. 1 (2 req'd)	
ESS Mechanical Drawing	Fig. 2 (2 req'd)	

System Specifications - 1000 kW Systems

	PA1000kW- 2192E	PA1000kW- 4200E	
Nominal AC power, kW	1000	1000	
kWh capacity	2192	4200	
Number of battery racks	24	46	
Duration at max discharge (hrs)	2	4	
Max current THD at nominal pwr	< 3	3%	
Nominal grid voltage	540 VAC, 3Ø		
Grid voltage range	475 - 594 VAC, 3Ø		
Nominal grid frequency, Hz	50 / 60		
Power factor range	0.8 (lagging) ~ 0.8 (leading)		
Electrical isolation method	Transformerless		
Grid frequency range, Hz	45 ~ 55 / 55 ~ 65		
Power factor at nominal power	> 0.99		
Max efficiency, inverter to AC	98.4%		
Off-grid operation (Islanding)	No		
PCS Mechanical Drawing	Fig. 4	PCS: Fig. 3 (1)	
ESS Mechanical Drawing	119.4	ESS: Fig. 5 (1)	

System Specifications - 2000 kW Systems

	PA2000kW- 4200E	PA2000kW- 8400E	
Nominal AC power, kW	2000		
kWh capacity	4200	8400	
Number of battery racks	46	92	
Duration at max discharge (hrs)	2	4	
Max current THD at nominal pwr	< 2	3%	
Nominal grid voltage	540 VAC, 3Ø		
Grid voltage range	475 - 594 VAC, 3Ø		
Nominal grid frequency, Hz	50 / 60		
Power factor range	0.8 (lagging) ~ 0.8 (leading)		
Electrical isolation method	Transformerless		
Grid frequency range, Hz	45 ~ 55 / 55 ~ 65		
Power factor at nominal power	> 0.99		
Max efficiency, inverter to AC	98.4%		
Off-grid operation (Islanding)	No		
PCS Mechanical Drawing	Fig. 3 (1 req'd)	Fig. 3 (1 req'd)	
ESS Mechanical Drawing	Fig. 5 (1 req'd)	Fig. 5 (2 req'd)	

2440 mm

1182 mm

211.8 in (17'-8")

46.5 in

96.1 in

16,500 lbs

Mechanical & Environmental Specifications - All Systems

Fig. 2. Small ESS

Fig. 5. Large ESS

Fig. 4. Integrated Unit

Length

Width

Height

Weight

5380 mm

5380 mm

1182 mm

2440 mm

7500 kg

Fire Suppression System

The Fire Suppression System is powered from the battery control panel (BCP), and has its own internal battery. It generates fire alarms and communicates with the EMS system via BCP.

HVAC System

The HVAC System keeps the ESS, and its batteries, cool. This extends battery life. The HVAC System is powered by the Battery Control Panel.

Emergency Shut-off

There is a manual emergency stop switch located outside of the enclosure, so it can be accessed by anyone in an emergency. An alarm and flashing strobe are co-located there.

Environmental Specifications

Specification	Value
Operating Temperature Range	-30°C ~ 50°C
Relative Humidity	0% ~ 95% (non-condensing)
Maximum Working Altitude	3000 m
Degree of Protection	NEMA 3R

About PATHION

PATHION's mission is to power the world efficiently. We provide full-service integrated renewable solutions, utility interconnect expertise, flexible and innovative financing packages, and high-quality deployment resources to deliver value for commercial, industrial, utility, marine, and government customers. We combine clean, renewable energy assets on-site to deliver fully-financed turnkey systems that deliver 100% uptime for up to 30% less than utilities. PATHION's EMS revolutionizes the value of local energy assets and facilitates participation in energy markets, delivering economic independence and grid stability. PATHION's Marine Hybrid Electric systems provide efficient, rapid-charge, low-carbon solutions for commercial vessels. PATHION provides long-term energy solutions that generate, collect, and deliver power that is stable, clean, and profitable.

